The new version of AlphaZero discovered a faster way to do matrix multiplication, a core problem in computing that affects thousands of everyday computer tasks. DeepMind has used its board-game ...
High-performance matrix multiplication remains a cornerstone of numerical computing, underpinning a wide array of applications from scientific simulations to machine learning. Researchers continually ...
Distributed computing has markedly advanced the efficiency and reliability of complex numerical tasks, particularly matrix multiplication, which is central to numerous computational applications from ...
AI training time is at a point in an exponential where more throughput isn't going to advance functionality much at all. The underlying problem, problem solving by training, is computationally ...
Current custom AI hardware devices are built around super-efficient, high performance matrix multiplication. This category of accelerators includes the host of AI chip startups and defines what more ...
In this video from PASC17, Alfio Lazzaro (University of Zurich, Switzerland) presents: Increasing Efficiency of Sparse Matrix-Matrix Multiplication. “Matrix-matrix multiplication is a basic operation ...
I have the sense that some perspective is missing here. People should remember that every Boomer didn't spring wholly evil from the mind of a mid-1940's supervillain. The father figures of the Boomers ...
Sparse matrix computations are prevalent in many scientific and technical applications. In many simulation applications, the solving of the sparse matrix-vector multiplication (SpMV) is critical for ...
There has been an ever-growing demand for artificial intelligence and fifth-generation communications globally, resulting in very large computing power and memory requirements. The slowing down or ...
Multiplying the content of two x-y matrices together for screen rendering and AI processing. Matrix multiplication provides a series of fast multiply and add operations in parallel, and it is built ...